
A SEMINAR REPORT ON BLUE - BRAIN

Submitted in partial fulfillment of the requirements for the award of the degree of

BACHELOR OF ENGINEERING

In

COMPUTER ENGINEERING

NOVEMBER – 2012.

COMPUTER ENGINEERING.

CERTIFICATE

SIGNATURE

SIGNATURE

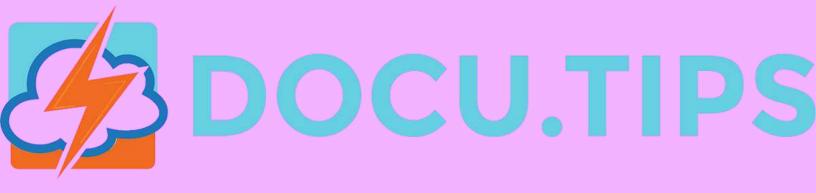
HEAD OF THE DEPARTMENT

Computer Engineering

Computer Engineering

ABSTRACT

Today scientists are in research to create an artificial brain that can think, respond, take decision, and keep anything in memory. The main aim is to upload human brain into machine. So that man can think, take decision without any effort. After the death of the body, the virtual brain will act as the man. So, even after the death of a person we will not loose the knowledge, intelligence, personalities, feelings and memories of that man, that can be used for the development of the human society. Technology is growing faster than every thing. IBM is now in research to create a virtual brain, called "Blue brain". If possible, this would be the first virtual brain of the world. IBM, in partnership with scientists at Switzerland's ole Polytech-nique Federale de Lausanne's (EPFL) Brain and Mind Institute will gin si llatin, 'he lain's blog i systems a loutr the data a wor ig 3 el the vill reate bi spe el o-c' mica nteracons at take place within the brain's interior. These include cognitive functions such as language, learning, perception and memory in addition to brain malfunction such as psychiatric disorders like depression and autism. From there, the modeling will expand to other regions of the brain and, if successful, shed light on the relationships between genetic, molecular and cognitive functions of the brain.


TABLE OF CONTENTS

Abstract	1
List of Figures	iv
Acknowledgment	v
CHAPTER 1. INTRODUCTION	1
1.1 Blue Brain	1
1.2 What is Virtual Brain?	2
1.3 Why we need Virtual Brain?	2
1.4 How it is possible?	2
CHAPTER 2. WORKING OF NATURAL BRAIN	4
2.1 Getting to know more about Human Brain	4
2.1.1 Sensory Input	6
2.1.2 Integration 1.3.1 tor atput 2.2.2 ow w ee, or, feel sm. 2 2.2.1 Nose 2.2.2 Eye	6 6 7 7
2.2.3 Tongue	7
2.2.4 Ear	8
CHAPTER 3. BRAIN SIMULATION	9
CHAPTER 4. HOW THE BLUE BRAIN PROJECT WILL WORK?	11
4.1 Goals & Objectives	11
4.2 Architecture of Blue Gene	11
4.3 Modelling the Microcircuit	13
4.4 Simulating the Microcircuit	16
4.5 Interpreting the Results	17
4.6 Data Manipulation Cascade	18
4.7 Whole Brain Simulations	20

CHAPTER 5. APPLICATIONS OF BLUE BRAIN PROJECT	23
5.1 What can we learn from Blue Brain?	23
5.1.1 Defining functions of the basic elements	23
5.1.2 Understanding complexity	23
5.1.3 Exploring the role of dendrites	24
5.1.4 Revealing functional diversity	24
5.1.5 Tracking the emergence of intelligence	24
5.1.6 Identifying points of vulnerability	24
5.1.7 Simulating disease and developing treatments	25
5.1.8 Providing a circuit design platform	25
5.2 Applications of Blue Brain	25
5.2.1 Gathering and Testing 100 Years of Data	25
5.2.2 Cracking the Neural Code	25
5.2.3 Understanding Neocortical Information Processing	26
5.2.4 A Novel Tool for Drug Discovery for Brain Disorders	26
2.0 Glot acr	20
.2.6 Fo dation f W le Brain Sir ation)7
A Foun or More roden rain incti	27
HAPTER 6. ADVANTAGES AND LIMITATIONS	28
6.1 Advantages	28
6.2 Limitations	29
CHAPTER 7. FUTURE PERSPECTIVE	30
CHAPTER 8. CONCLUSION	31
References	32
NCICI CIICES	34

LIST OF FIGURES

2.1	Medial view of the left hemisphere of human brain	5
4.1	The Blue Gene/L supercomputer architecture	10
4.2	Elementary building blocks of neural microcircuits	11
4.3	Reconstructing the neocortical column.	13
4.4	The data manipulation cascade	18

ACKNOWLEDGMENTS

The elation and gratification of this seminar will be incomplete without mentioning all the people who helped me to make it possible, whose gratitude and encouragement were invaluable to me.

Firstly, I would like to thank GOD, almighty, our supreme guide, for bestowing his blessings upon me in my entire endeavour. I express my sincere gratitude to Prof. Purnima Gandhi, Head of Department for his support and guidance.

I also like to thank Ms. Anamika Sirohi (lecturer), Mr. Ajaykumar Shah cturer), Mr. Savan R. Singh (lecturer) and Prof. Manoj B Patel (Asst professor) their professor words of their contraction.

I halso lank to all le ou electroers our partment a stude of class for their support and suggestions.

CHAPTER 1

INTRODUCTION

Human brain is the most valuable creation of God. The man is called intelligent because of the brain. The brain translates the information delivered by the impulses, which then enables the person to react. But we loss the knowledge of a brain when the body is destroyed after the death of man. That knowledge might have been used for the development of the human society. What happen if we create a brain and up load the contents of natural brain into it?

Blue Brain

fir virtual brai world That nine th eans a ma ca name bra, Tod sciel. or in re arel tion crete an t can think, response, take decision, and keep anything in memory. The main aim is to upload human brain into machine. So that man can think, take decision without any effort. After the death of the body, the virtual brain will act as the man .So, even after the death of a person we will not loose the knowledge, intelligence, personalities, feelings and memories of that man that can be used for the development of the human society. No one has ever understood the complexity of human brain. It is complex than any circuitry in the world. So, question may arise "Is it really possible to create a human brain?" The answer is "Yes". Because what ever man has created today always he has followed the nature. When man does not have a device called computer, it was a big question for all. Technology is growing faster than every thing. IBM is now in research to create a virtual brain, called "Blue brain". If possible, this would be the first virtual brain of the world. With in 30 years, we will be able to scan ourselves into the computers. Is this the beginning of eternal life.

1.2 What is Virtual Brain?

Virtual brain is an artificial brain, which does not actually the natural brain, but can act as the brain. It can think like brain, take decisions based on the past experience, and response as the natural brain can. It is possible by using a super computer, with a huge amount of storage capacity, processing power and an interface between the human brain and this artificial one. Through this interface the data stored in the natural brain can be up loaded into the computer. So the brain and the knowledge, intelligence of anyone can be kept and used for ever, even after the death of the person.

Why we need Virtual Brain?

ar levelop

nk up to such an extent where other can not reach. Human society is always need of such intelligence and such an intelligent brain to have with. But the intelligence is lost along with the body after the death. The virtual brain is a solution to it. The brain and intelli-gence will alive even after the death. We often face difficulties in remembering things such as people's names, their birthdays, and the spellings of words, proper grammar, important dates, history, facts etc... In the busy life every one want to be relaxed. Can't we use any machine to assist for all these? Virtual brain may be the solution to it. What if we upload ourselves into computer, we were simply aware of a computer, or maybe, what if we lived in a computer as a program?

b ause of ou intell nce. Inte

rence

th

1.4 How it is possible?

First, it is helpful to describe the basic manners in which a person may be uploaded into a computer. Raymond Kurzweil recently provided an interesting paper

on this topic. In it, he describes both invasive and noninvasive techniques. The most promising is the use of very small robots, or nanobots. These robots will be small enough to travel throughout our circulatory systems. Traveling into the spine and brain, they will be able to monitor the activity and structure of our central nervous system. They will be able to provide an interface with computers that is as close as our mind can be while we still reside in our biological form. Nanobots could also carefully scan the structure of our brain, providing a complete readout of the connections between each neuron. They would also record the current state of the brain. This information, when entered into a computer, could then continue to function as us. All that is required is a computer with large enough storage space and processing power. Is the pattern and state of neuron connections in our brain truly all that makes up our conscious selves? Many people believe firmly those we posses a soul, while some very technical people believe that quantum forces contribute to our awareness. But we have to now think technically. Note, however, that we need not know how the brain actually functions, to transfer it to a computer. We need only by the media and contents. The actual mystery of how we achieved consciousness we ma the fir place, hc air is a separ discu ion. Reall his co be ver lif ult and mı x to us. For is we ive to firs appars 1 now h huma actually.